पैरामीटर बनाम आँकड़ा
इन सवालों पर विचार करें; आपके देश में एक व्यक्ति की औसत आय क्या है, दुनिया में महिलाओं की औसत ऊंचाई क्या है, और मुर्गी की कुछ नस्लों द्वारा उत्पादित अंडों का औसत वजन क्या है? ऐसा सर्वेक्षण करना असंभव है जिसमें रुचि के सभी विषय शामिल हों। पहले मामले में, यह आपके देश के सभी लोग हैं, दूसरे में, आपकी दुनिया की सभी महिलाएं, और तीसरे में, उस नस्ल के मुर्गी द्वारा उत्पादित सभी अंडे हैं। सभी तत्वों से युक्त इस बड़े समूह को सांख्यिकी भाषा में जनसंख्या के रूप में जाना जाता है।
हालांकि, जनसंख्या से सीमित संख्या में तत्वों को इस तरह से चुनकर कि यह अन्य सभी का प्रतिनिधित्व करता है, हम सबसेट का विश्लेषण करके जनसंख्या के गुणों को घटा सकते हैं।जनसंख्या के इस उपसमुच्चय को प्रतिदर्श के रूप में जाना जाता है। वर्णनात्मक आँकड़ों के उपायों का उपयोग जनसंख्या की मुख्य विशेषताओं को संक्षेप में बताने और समझाने के लिए किया जाता है।
पैरामीटर के बारे में अधिक
किसी जनसंख्या का एक वर्णनात्मक माप (जैसे माध्य, बहुलक या माध्यिका) एक पैरामीटर के रूप में जाना जाता है। यह उपलब्ध डेटा को सारांशित करके एक विशेषता के मूल्य को संख्यात्मक रूप से व्यक्त करता है। जैसा कि पहले बताया गया है, संपूर्ण जनसंख्या पर विशेषता के मूल्यों पर विचार करना असंभव है। इसलिए, नमूने का उपयोग उपायों की गणना के लिए किया जाता है और फिर उन्हें जनसंख्या में अनुमान लगाया जाता है।
हालांकि, असाधारण मामलों में, जैसे पूर्ण जनगणना और मानकीकृत परीक्षण, मापदंडों की गणना जनसंख्या से की जाती है।
शास्त्रीय संभाव्यता सिद्धांत में, एक पैरामीटर एक स्थिरांक होता है, लेकिन इसका "अज्ञात मान" होता है, जो नमूनों के आधार पर अनुमानों द्वारा निर्धारित किया जाता है। आधुनिक बायेसियन प्रायिकता में, पैरामीटर यादृच्छिक चर हैं, और उनकी अनिश्चितता को वितरण के रूप में वर्णित किया गया है।
आँकड़ों के बारे में अधिक
आंकड़े नमूने का एक वर्णनात्मक माप है। पैरामीटर के विपरीत, नमूना मूल्यों की गणना जनसंख्या से प्राप्त यादृच्छिक नमूने से की जाती है। अधिक औपचारिक रूप से, इसे नमूने के एक फलन के रूप में परिभाषित किया गया है, लेकिन नमूने के वितरण से स्वतंत्र है।
अनुमान में, आँकड़े मापदंडों के लिए अनुमानक के रूप में कार्य करते हैं। नमूना माध्य, नमूना विचरण और मानक विचलन, क्वांटाइल जैसे कि क्वार्टाइल और पर्सेंटाइल, और ऑर्डर के आंकड़े जैसे कि अधिकतम और न्यूनतम सभी एक नमूने के आंकड़ों की श्रेणी से संबंधित हैं।
आँकड़ों की अवलोकनीयता आँकड़ों और पैरामीटर को अलग करने वाला एक प्रमुख कारक है। एक आबादी में, पैरामीटर सीधे देखने योग्य नहीं है, लेकिन एक नमूने में, आंकड़े आसानी से देखे जा सकते हैं, ज्यादातर समय एक या दो गणना दूर होती है। इसके अतिरिक्त, आँकड़ों में पूर्णता, पर्याप्तता, निरंतरता, निष्पक्षता, मजबूती, कम्प्यूटेशनल सुविधा, कम विचरण जैसे महत्वपूर्ण गुण होते हैं, और माध्य वर्ग त्रुटि न्यूनतम होती है।
पैरामीटर और स्टेटिस्टिक में क्या अंतर है?
• पैरामीटर जनसंख्या का एक वर्णनात्मक माप है, और आंकड़े एक नमूने का एक वर्णनात्मक उपाय है।
• पैरामीटर सीधे गणना योग्य नहीं हैं, लेकिन आंकड़े गणना योग्य और सीधे देखने योग्य हैं।
• आंकड़ों से पैरामीटर काटा जाता है (अनुमानित) और आंकड़े जनसंख्या पैरामीटर के अनुमानक के रूप में कार्य करते हैं। (नमूना माध्य (x) जनसंख्या माध्य µ के अनुमानक के रूप में कार्य करता है)
• पैरामीटर में, मान जरूरी नहीं कि नमूना मानों के बराबर हों, लेकिन अनुमानित हों।