समांतर चतुर्भुज और आयत के बीच का अंतर

समांतर चतुर्भुज और आयत के बीच का अंतर
समांतर चतुर्भुज और आयत के बीच का अंतर

वीडियो: समांतर चतुर्भुज और आयत के बीच का अंतर

वीडियो: समांतर चतुर्भुज और आयत के बीच का अंतर
वीडियो: एक समचतुर्भुज, आयत और एक वर्ग के गुण 2024, नवंबर
Anonim

समांतर चतुर्भुज बनाम आयत

समांतर चतुर्भुज और आयत चतुर्भुज हैं। इन आकृतियों की ज्यामिति हजारों वर्षों से मनुष्य को ज्ञात थी। ग्रीक गणितज्ञ यूक्लिड द्वारा लिखित पुस्तक "एलिमेंट्स" में इस विषय का स्पष्ट रूप से इलाज किया गया है।

समांतर चतुर्भुज

समांतर चतुर्भुज को चार भुजाओं वाली ज्यामितीय आकृति के रूप में परिभाषित किया जा सकता है, जिसमें विपरीत भुजाएँ एक दूसरे के समानांतर होती हैं। अधिक सटीक रूप से यह एक चतुर्भुज है जिसमें समानांतर पक्षों के दो जोड़े होते हैं। यह समांतर प्रकृति समांतर चतुर्भुजों को कई ज्यामितीय विशेषताएँ देती है।

छवि
छवि
छवि
छवि

एक चतुर्भुज एक समांतर चतुर्भुज होता है यदि निम्नलिखित ज्यामितीय विशेषताएँ पाई जाती हैं।

• विरोधी पक्षों के दो जोड़े लंबाई में बराबर हैं। (एबी=डीसी, एडी=बीसी)

• विपरीत कोणों के दो युग्म आकार में बराबर हैं। ([लेटेक्स]डी\हैट{ए}बी=बी\हैट{सी}डी, ए\हैट{डी}सी=ए\हैट{बी}सी[/लेटेक्स])

• यदि आसन्न कोण पूरक हैं [लेटेक्स]डी\हैट{ए}बी + ए\हैट{डी}सी=ए\हैट{डी}सी + बी\हैट{सी}डी=बी\हैट {सी}डी + ए\हैट{बी}सी=ए\हैट{बी}सी + डी\हैट{ए}बी=180^{circ}=\pi rad[/latex]

• पक्षों का एक युग्म, जो एक दूसरे का विरोध कर रहा है, समानांतर और लंबाई में बराबर है। (एबी=डीसी और एबी∥डीसी)

• विकर्ण एक दूसरे को समद्विभाजित करते हैं (AO=OC, BO=OD)

• प्रत्येक विकर्ण चतुर्भुज को दो सर्वांगसम त्रिभुजों में विभाजित करता है। (∆ADB BCD, ∆ABC ADC)

आगे, भुजाओं के वर्गों का योग विकर्णों के वर्गों के योग के बराबर होता है। इसे कभी-कभी समांतर चतुर्भुज कानून के रूप में जाना जाता है और भौतिकी और इंजीनियरिंग में व्यापक अनुप्रयोग हैं। (एबी2 + बीसी2 + सीडी2 + डीए2=एसी2 + बीडी2)

उपरोक्त विशेषताओं में से प्रत्येक को गुणों के रूप में उपयोग किया जा सकता है, एक बार यह स्थापित हो जाने पर कि चतुर्भुज एक समांतर चतुर्भुज है।

समांतर चतुर्भुज के क्षेत्रफल की गणना एक भुजा की लंबाई और विपरीत भुजा की ऊंचाई के गुणनफल से की जा सकती है। इसलिए, समांतर चतुर्भुज का क्षेत्रफलकहा जा सकता है

समांतर चतुर्भुज का क्षेत्रफल=आधार × ऊँचाई=AB×h

छवि
छवि

समांतर चतुर्भुज का क्षेत्रफल व्यक्तिगत समांतर चतुर्भुज के आकार से स्वतंत्र होता है। यह केवल आधार की लंबाई और लंबवत ऊंचाई पर निर्भर है।

यदि समांतर चतुर्भुज की भुजाओं को दो सदिशों द्वारा निरूपित किया जा सकता है, तो क्षेत्र दो आसन्न सदिशों के सदिश गुणनफल (क्रॉस उत्पाद) के परिमाण से प्राप्त किया जा सकता है।

यदि भुजा AB और AD को क्रमशः सदिश ([लेटेक्स]\overrightarrow{AB}[/latex]) और ([latex]\overrightarrow{AD}[/latex]) द्वारा दर्शाया जाता है, तो इसका क्षेत्रफल समांतर चतुर्भुज [latex]\left |. द्वारा दिया गया है \overrightarrow{AB}\times \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], जहां α [latex]\overrightarrow{AB}[/latex] और [latex]\overrightarrow{AD}[/latex] के बीच का कोण है।

समांतर चतुर्भुज के कुछ उन्नत गुण निम्नलिखित हैं;

• समांतर चतुर्भुज का क्षेत्रफल उसके किसी भी विकर्ण द्वारा बनाए गए त्रिभुज के क्षेत्रफल का दोगुना होता है।

• समांतर चतुर्भुज का क्षेत्रफल मध्यबिंदु से गुजरने वाली किसी भी रेखा से आधे में विभाजित होता है।

• कोई भी गैर-पतित एफ़िन परिवर्तन एक समांतर चतुर्भुज को दूसरे समांतर चतुर्भुज में ले जाता है

• एक समांतर चतुर्भुज में क्रम 2 की घूर्णन सममिति होती है

• समांतर चतुर्भुज के किसी भी आंतरिक बिंदु से भुजाओं तक की दूरी का योग बिंदु के स्थान से स्वतंत्र होता है

आयत

चार समकोण वाले चतुर्भुज को आयत कहते हैं। यह समांतर चतुर्भुज का एक विशेष मामला है जहां किन्हीं दो आसन्न भुजाओं के बीच के कोण समकोण होते हैं।

छवि
छवि

एक समांतर चतुर्भुज के सभी गुणों के अलावा, आयत की ज्यामिति पर विचार करते समय अतिरिक्त विशेषताओं को पहचाना जा सकता है।

• शीर्षों पर प्रत्येक कोण समकोण होता है।

• विकर्ण लंबाई में बराबर हैं, और वे एक दूसरे को समद्विभाजित करते हैं। इसलिए, समद्विभाजित खंड भी लंबाई में बराबर होते हैं।

• पाइथागोरस प्रमेय का उपयोग करके विकर्णों की लंबाई की गणना की जा सकती है:

पीक्यू2 + पीएस2 =वर्ग2

• क्षेत्रफल सूत्र लंबाई और चौड़ाई के गुणनफल तक कम हो जाता है।

आयत का क्षेत्रफल=लंबाई × चौड़ाई

• एक आयत पर कई सममित गुण पाए जाते हैं, जैसे;

– एक आयत चक्रीय होता है, जहाँ सभी शीर्षों को एक वृत्त की परिधि पर रखा जा सकता है।

– यह समकोण होता है, जहां सभी कोण बराबर होते हैं।

– यह समकोणीय है, जहां सभी कोने समान समरूपता कक्षा के भीतर स्थित हैं।

– इसमें परावर्तन समरूपता और घूर्णी समरूपता दोनों हैं।

समांतर चतुर्भुज और आयत में क्या अंतर है?

• समांतर चतुर्भुज और आयत चतुर्भुज हैं। आयत समांतर चतुर्भुज का एक विशेष मामला है।

• सूत्र आधार ×ऊंचाई का उपयोग करके किसी के क्षेत्रफल की गणना की जा सकती है।

• विकर्णों को ध्यान में रखते हुए;

– समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं, और समांतर चतुर्भुज को समद्विभाजित करके दो सर्वांगसम त्रिभुज बनाते हैं।

– आयत के विकर्ण लंबाई में बराबर होते हैं और एक दूसरे को समद्विभाजित करते हैं; द्विभाजित खंड लंबाई में बराबर होते हैं। विकर्ण आयत को दो सर्वांगसम समकोण त्रिभुजों में समद्विभाजित करते हैं।

• आंतरिक कोणों को ध्यान में रखते हुए;

– समांतर चतुर्भुज के सम्मुख आंतरिक कोणों का आकार बराबर होता है। दो आसन्न आंतरिक कोण संपूरक हैं

– आयत के चारों आंतरिक कोण समकोण हैं।

• पक्षों को ध्यान में रखते हुए;

– एक समांतर चतुर्भुज में, भुजाओं के वर्गों का योग विकर्ण के वर्गों के योग के बराबर होता है (समांतर चतुर्भुज का नियम)

– आयतों में, दो आसन्न भुजाओं के वर्गों का योग सिरों पर विकर्ण के वर्ग के बराबर होता है। (पाइथागोरस का नियम)

सिफारिश की: